%PDF- %PDF-
Direktori : /usr/lib/python2.7/site-packages/chardet/ |
Current File : //usr/lib/python2.7/site-packages/chardet/jpcntx.py |
######################## BEGIN LICENSE BLOCK ######################## # The Original Code is Mozilla Communicator client code. # # The Initial Developer of the Original Code is # Netscape Communications Corporation. # Portions created by the Initial Developer are Copyright (C) 1998 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Mark Pilgrim - port to Python # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA ######################### END LICENSE BLOCK ######################### from .compat import wrap_ord NUM_OF_CATEGORY = 6 DONT_KNOW = -1 ENOUGH_REL_THRESHOLD = 100 MAX_REL_THRESHOLD = 1000 MINIMUM_DATA_THRESHOLD = 4 # This is hiragana 2-char sequence table, the number in each cell represents its frequency category jp2CharContext = ( (0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1), (2,4,0,4,0,3,0,4,0,3,4,4,4,2,4,3,3,4,3,2,3,3,4,2,3,3,3,2,4,1,4,3,3,1,5,4,3,4,3,4,3,5,3,0,3,5,4,2,0,3,1,0,3,3,0,3,3,0,1,1,0,4,3,0,3,3,0,4,0,2,0,3,5,5,5,5,4,0,4,1,0,3,4), (0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2), (0,4,0,5,0,5,0,4,0,4,5,4,4,3,5,3,5,1,5,3,4,3,4,4,3,4,3,3,4,3,5,4,4,3,5,5,3,5,5,5,3,5,5,3,4,5,5,3,1,3,2,0,3,4,0,4,2,0,4,2,1,5,3,2,3,5,0,4,0,2,0,5,4,4,5,4,5,0,4,0,0,4,4), (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (0,3,0,4,0,3,0,3,0,4,5,4,3,3,3,3,4,3,5,4,4,3,5,4,4,3,4,3,4,4,4,4,5,3,4,4,3,4,5,5,4,5,5,1,4,5,4,3,0,3,3,1,3,3,0,4,4,0,3,3,1,5,3,3,3,5,0,4,0,3,0,4,4,3,4,3,3,0,4,1,1,3,4), (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (0,4,0,3,0,3,0,4,0,3,4,4,3,2,2,1,2,1,3,1,3,3,3,3,3,4,3,1,3,3,5,3,3,0,4,3,0,5,4,3,3,5,4,4,3,4,4,5,0,1,2,0,1,2,0,2,2,0,1,0,0,5,2,2,1,4,0,3,0,1,0,4,4,3,5,4,3,0,2,1,0,4,3), (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (0,3,0,5,0,4,0,2,1,4,4,2,4,1,4,2,4,2,4,3,3,3,4,3,3,3,3,1,4,2,3,3,3,1,4,4,1,1,1,4,3,3,2,0,2,4,3,2,0,3,3,0,3,1,1,0,0,0,3,3,0,4,2,2,3,4,0,4,0,3,0,4,4,5,3,4,4,0,3,0,0,1,4), (1,4,0,4,0,4,0,4,0,3,5,4,4,3,4,3,5,4,3,3,4,3,5,4,4,4,4,3,4,2,4,3,3,1,5,4,3,2,4,5,4,5,5,4,4,5,4,4,0,3,2,2,3,3,0,4,3,1,3,2,1,4,3,3,4,5,0,3,0,2,0,4,5,5,4,5,4,0,4,0,0,5,4), (0,5,0,5,0,4,0,3,0,4,4,3,4,3,3,3,4,0,4,4,4,3,4,3,4,3,3,1,4,2,4,3,4,0,5,4,1,4,5,4,4,5,3,2,4,3,4,3,2,4,1,3,3,3,2,3,2,0,4,3,3,4,3,3,3,4,0,4,0,3,0,4,5,4,4,4,3,0,4,1,0,1,3), (0,3,1,4,0,3,0,2,0,3,4,4,3,1,4,2,3,3,4,3,4,3,4,3,4,4,3,2,3,1,5,4,4,1,4,4,3,5,4,4,3,5,5,4,3,4,4,3,1,2,3,1,2,2,0,3,2,0,3,1,0,5,3,3,3,4,3,3,3,3,4,4,4,4,5,4,2,0,3,3,2,4,3), (0,2,0,3,0,1,0,1,0,0,3,2,0,0,2,0,1,0,2,1,3,3,3,1,2,3,1,0,1,0,4,2,1,1,3,3,0,4,3,3,1,4,3,3,0,3,3,2,0,0,0,0,1,0,0,2,0,0,0,0,0,4,1,0,2,3,2,2,2,1,3,3,3,4,4,3,2,0,3,1,0,3,3), (0,4,0,4,0,3,0,3,0,4,4,4,3,3,3,3,3,3,4,3,4,2,4,3,4,3,3,2,4,3,4,5,4,1,4,5,3,5,4,5,3,5,4,0,3,5,5,3,1,3,3,2,2,3,0,3,4,1,3,3,2,4,3,3,3,4,0,4,0,3,0,4,5,4,4,5,3,0,4,1,0,3,4), (0,2,0,3,0,3,0,0,0,2,2,2,1,0,1,0,0,0,3,0,3,0,3,0,1,3,1,0,3,1,3,3,3,1,3,3,3,0,1,3,1,3,4,0,0,3,1,1,0,3,2,0,0,0,0,1,3,0,1,0,0,3,3,2,0,3,0,0,0,0,0,3,4,3,4,3,3,0,3,0,0,2,3), (2,3,0,3,0,2,0,1,0,3,3,4,3,1,3,1,1,1,3,1,4,3,4,3,3,3,0,0,3,1,5,4,3,1,4,3,2,5,5,4,4,4,4,3,3,4,4,4,0,2,1,1,3,2,0,1,2,0,0,1,0,4,1,3,3,3,0,3,0,1,0,4,4,4,5,5,3,0,2,0,0,4,4), (0,2,0,1,0,3,1,3,0,2,3,3,3,0,3,1,0,0,3,0,3,2,3,1,3,2,1,1,0,0,4,2,1,0,2,3,1,4,3,2,0,4,4,3,1,3,1,3,0,1,0,0,1,0,0,0,1,0,0,0,0,4,1,1,1,2,0,3,0,0,0,3,4,2,4,3,2,0,1,0,0,3,3), (0,1,0,4,0,5,0,4,0,2,4,4,2,3,3,2,3,3,5,3,3,3,4,3,4,2,3,0,4,3,3,3,4,1,4,3,2,1,5,5,3,4,5,1,3,5,4,2,0,3,3,0,1,3,0,4,2,0,1,3,1,4,3,3,3,3,0,3,0,1,0,3,4,4,4,5,5,0,3,0,1,4,5), (0,2,0,3,0,3,0,0,0,2,3,1,3,0,4,0,1,1,3,0,3,4,3,2,3,1,0,3,3,2,3,1,3,0,2,3,0,2,1,4,1,2,2,0,0,3,3,0,0,2,0,0,0,1,0,0,0,0,2,2,0,3,2,1,3,3,0,2,0,2,0,0,3,3,1,2,4,0,3,0,2,2,3), (2,4,0,5,0,4,0,4,0,2,4,4,4,3,4,3,3,3,1,2,4,3,4,3,4,4,5,0,3,3,3,3,2,0,4,3,1,4,3,4,1,4,4,3,3,4,4,3,1,2,3,0,4,2,0,4,1,0,3,3,0,4,3,3,3,4,0,4,0,2,0,3,5,3,4,5,2,0,3,0,0,4,5), (0,3,0,4,0,1,0,1,0,1,3,2,2,1,3,0,3,0,2,0,2,0,3,0,2,0,0,0,1,0,1,1,0,0,3,1,0,0,0,4,0,3,1,0,2,1,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4,2,2,3,1,0,3,0,0,0,1,4,4,4,3,0,0,4,0,0,1,4), (1,4,1,5,0,3,0,3,0,4,5,4,4,3,5,3,3,4,4,3,4,1,3,3,3,3,2,1,4,1,5,4,3,1,4,4,3,5,4,4,3,5,4,3,3,4,4,4,0,3,3,1,2,3,0,3,1,0,3,3,0,5,4,4,4,4,4,4,3,3,5,4,4,3,3,5,4,0,3,2,0,4,4), (0,2,0,3,0,1,0,0,0,1,3,3,3,2,4,1,3,0,3,1,3,0,2,2,1,1,0,0,2,0,4,3,1,0,4,3,0,4,4,4,1,4,3,1,1,3,3,1,0,2,0,0,1,3,0,0,0,0,2,0,0,4,3,2,4,3,5,4,3,3,3,4,3,3,4,3,3,0,2,1,0,3,3), (0,2,0,4,0,3,0,2,0,2,5,5,3,4,4,4,4,1,4,3,3,0,4,3,4,3,1,3,3,2,4,3,0,3,4,3,0,3,4,4,2,4,4,0,4,5,3,3,2,2,1,1,1,2,0,1,5,0,3,3,2,4,3,3,3,4,0,3,0,2,0,4,4,3,5,5,0,0,3,0,2,3,3), (0,3,0,4,0,3,0,1,0,3,4,3,3,1,3,3,3,0,3,1,3,0,4,3,3,1,1,0,3,0,3,3,0,0,4,4,0,1,5,4,3,3,5,0,3,3,4,3,0,2,0,1,1,1,0,1,3,0,1,2,1,3,3,2,3,3,0,3,0,1,0,1,3,3,4,4,1,0,1,2,2,1,3), (0,1,0,4,0,4,0,3,0,1,3,3,3,2,3,1,1,0,3,0,3,3,4,3,2,4,2,0,1,0,4,3,2,0,4,3,0,5,3,3,2,4,4,4,3,3,3,4,0,1,3,0,0,1,0,0,1,0,0,0,0,4,2,3,3,3,0,3,0,0,0,4,4,4,5,3,2,0,3,3,0,3,5), (0,2,0,3,0,0,0,3,0,1,3,0,2,0,0,0,1,0,3,1,1,3,3,0,0,3,0,0,3,0,2,3,1,0,3,1,0,3,3,2,0,4,2,2,0,2,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,2,1,2,0,1,0,1,0,0,0,1,3,1,2,0,0,0,1,0,0,1,4), (0,3,0,3,0,5,0,1,0,2,4,3,1,3,3,2,1,1,5,2,1,0,5,1,2,0,0,0,3,3,2,2,3,2,4,3,0,0,3,3,1,3,3,0,2,5,3,4,0,3,3,0,1,2,0,2,2,0,3,2,0,2,2,3,3,3,0,2,0,1,0,3,4,4,2,5,4,0,3,0,0,3,5), (0,3,0,3,0,3,0,1,0,3,3,3,3,0,3,0,2,0,2,1,1,0,2,0,1,0,0,0,2,1,0,0,1,0,3,2,0,0,3,3,1,2,3,1,0,3,3,0,0,1,0,0,0,0,0,2,0,0,0,0,0,2,3,1,2,3,0,3,0,1,0,3,2,1,0,4,3,0,1,1,0,3,3), (0,4,0,5,0,3,0,3,0,4,5,5,4,3,5,3,4,3,5,3,3,2,5,3,4,4,4,3,4,3,4,5,5,3,4,4,3,4,4,5,4,4,4,3,4,5,5,4,2,3,4,2,3,4,0,3,3,1,4,3,2,4,3,3,5,5,0,3,0,3,0,5,5,5,5,4,4,0,4,0,1,4,4), (0,4,0,4,0,3,0,3,0,3,5,4,4,2,3,2,5,1,3,2,5,1,4,2,3,2,3,3,4,3,3,3,3,2,5,4,1,3,3,5,3,4,4,0,4,4,3,1,1,3,1,0,2,3,0,2,3,0,3,0,0,4,3,1,3,4,0,3,0,2,0,4,4,4,3,4,5,0,4,0,0,3,4), (0,3,0,3,0,3,1,2,0,3,4,4,3,3,3,0,2,2,4,3,3,1,3,3,3,1,1,0,3,1,4,3,2,3,4,4,2,4,4,4,3,4,4,3,2,4,4,3,1,3,3,1,3,3,0,4,1,0,2,2,1,4,3,2,3,3,5,4,3,3,5,4,4,3,3,0,4,0,3,2,2,4,4), (0,2,0,1,0,0,0,0,0,1,2,1,3,0,0,0,0,0,2,0,1,2,1,0,0,1,0,0,0,0,3,0,0,1,0,1,1,3,1,0,0,0,1,1,0,1,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,1,2,2,0,3,4,0,0,0,1,1,0,0,1,0,0,0,0,0,1,1), (0,1,0,0,0,1,0,0,0,0,4,0,4,1,4,0,3,0,4,0,3,0,4,0,3,0,3,0,4,1,5,1,4,0,0,3,0,5,0,5,2,0,1,0,0,0,2,1,4,0,1,3,0,0,3,0,0,3,1,1,4,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0), (1,4,0,5,0,3,0,2,0,3,5,4,4,3,4,3,5,3,4,3,3,0,4,3,3,3,3,3,3,2,4,4,3,1,3,4,4,5,4,4,3,4,4,1,3,5,4,3,3,3,1,2,2,3,3,1,3,1,3,3,3,5,3,3,4,5,0,3,0,3,0,3,4,3,4,4,3,0,3,0,2,4,3), (0,1,0,4,0,0,0,0,0,1,4,0,4,1,4,2,4,0,3,0,1,0,1,0,0,0,0,0,2,0,3,1,1,1,0,3,0,0,0,1,2,1,0,0,1,1,1,1,0,1,0,0,0,1,0,0,3,0,0,0,0,3,2,0,2,2,0,1,0,0,0,2,3,2,3,3,0,0,0,0,2,1,0), (0,5,1,5,0,3,0,3,0,5,4,4,5,1,5,3,3,0,4,3,4,3,5,3,4,3,3,2,4,3,4,3,3,0,3,3,1,4,4,3,4,4,4,3,4,5,5,3,2,3,1,1,3,3,1,3,1,1,3,3,2,4,5,3,3,5,0,4,0,3,0,4,4,3,5,3,3,0,3,4,0,4,3), (0,5,0,5,0,3,0,2,0,4,4,3,5,2,4,3,3,3,4,4,4,3,5,3,5,3,3,1,4,0,4,3,3,0,3,3,0,4,4,4,4,5,4,3,3,5,5,3,2,3,1,2,3,2,0,1,0,0,3,2,2,4,4,3,1,5,0,4,0,3,0,4,3,1,3,2,1,0,3,3,0,3,3), (0,4,0,5,0,5,0,4,0,4,5,5,5,3,4,3,3,2,5,4,4,3,5,3,5,3,4,0,4,3,4,4,3,2,4,4,3,4,5,4,4,5,5,0,3,5,5,4,1,3,3,2,3,3,1,3,1,0,4,3,1,4,4,3,4,5,0,4,0,2,0,4,3,4,4,3,3,0,4,0,0,5,5), (0,4,0,4,0,5,0,1,1,3,3,4,4,3,4,1,3,0,5,1,3,0,3,1,3,1,1,0,3,0,3,3,4,0,4,3,0,4,4,4,3,4,4,0,3,5,4,1,0,3,0,0,2,3,0,3,1,0,3,1,0,3,2,1,3,5,0,3,0,1,0,3,2,3,3,4,4,0,2,2,0,4,4), (2,4,0,5,0,4,0,3,0,4,5,5,4,3,5,3,5,3,5,3,5,2,5,3,4,3,3,4,3,4,5,3,2,1,5,4,3,2,3,4,5,3,4,1,2,5,4,3,0,3,3,0,3,2,0,2,3,0,4,1,0,3,4,3,3,5,0,3,0,1,0,4,5,5,5,4,3,0,4,2,0,3,5), (0,5,0,4,0,4,0,2,0,5,4,3,4,3,4,3,3,3,4,3,4,2,5,3,5,3,4,1,4,3,4,4,4,0,3,5,0,4,4,4,4,5,3,1,3,4,5,3,3,3,3,3,3,3,0,2,2,0,3,3,2,4,3,3,3,5,3,4,1,3,3,5,3,2,0,0,0,0,4,3,1,3,3), (0,1,0,3,0,3,0,1,0,1,3,3,3,2,3,3,3,0,3,0,0,0,3,1,3,0,0,0,2,2,2,3,0,0,3,2,0,1,2,4,1,3,3,0,0,3,3,3,0,1,0,0,2,1,0,0,3,0,3,1,0,3,0,0,1,3,0,2,0,1,0,3,3,1,3,3,0,0,1,1,0,3,3), (0,2,0,3,0,2,1,4,0,2,2,3,1,1,3,1,1,0,2,0,3,1,2,3,1,3,0,0,1,0,4,3,2,3,3,3,1,4,2,3,3,3,3,1,0,3,1,4,0,1,1,0,1,2,0,1,1,0,1,1,0,3,1,3,2,2,0,1,0,0,0,2,3,3,3,1,0,0,0,0,0,2,3), (0,5,0,4,0,5,0,2,0,4,5,5,3,3,4,3,3,1,5,4,4,2,4,4,4,3,4,2,4,3,5,5,4,3,3,4,3,3,5,5,4,5,5,1,3,4,5,3,1,4,3,1,3,3,0,3,3,1,4,3,1,4,5,3,3,5,0,4,0,3,0,5,3,3,1,4,3,0,4,0,1,5,3), (0,5,0,5,0,4,0,2,0,4,4,3,4,3,3,3,3,3,5,4,4,4,4,4,4,5,3,3,5,2,4,4,4,3,4,4,3,3,4,4,5,5,3,3,4,3,4,3,3,4,3,3,3,3,1,2,2,1,4,3,3,5,4,4,3,4,0,4,0,3,0,4,4,4,4,4,1,0,4,2,0,2,4), (0,4,0,4,0,3,0,1,0,3,5,2,3,0,3,0,2,1,4,2,3,3,4,1,4,3,3,2,4,1,3,3,3,0,3,3,0,0,3,3,3,5,3,3,3,3,3,2,0,2,0,0,2,0,0,2,0,0,1,0,0,3,1,2,2,3,0,3,0,2,0,4,4,3,3,4,1,0,3,0,0,2,4), (0,0,0,4,0,0,0,0,0,0,1,0,1,0,2,0,0,0,0,0,1,0,2,0,1,0,0,0,0,0,3,1,3,0,3,2,0,0,0,1,0,3,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,0,2,0,0,0,0,0,0,2), (0,2,1,3,0,2,0,2,0,3,3,3,3,1,3,1,3,3,3,3,3,3,4,2,2,1,2,1,4,0,4,3,1,3,3,3,2,4,3,5,4,3,3,3,3,3,3,3,0,1,3,0,2,0,0,1,0,0,1,0,0,4,2,0,2,3,0,3,3,0,3,3,4,2,3,1,4,0,1,2,0,2,3), (0,3,0,3,0,1,0,3,0,2,3,3,3,0,3,1,2,0,3,3,2,3,3,2,3,2,3,1,3,0,4,3,2,0,3,3,1,4,3,3,2,3,4,3,1,3,3,1,1,0,1,1,0,1,0,1,0,1,0,0,0,4,1,1,0,3,0,3,1,0,2,3,3,3,3,3,1,0,0,2,0,3,3), (0,0,0,0,0,0,0,0,0,0,3,0,2,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0,3,0,3,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,2,0,2,3,0,0,0,0,0,0,0,0,3), (0,2,0,3,1,3,0,3,0,2,3,3,3,1,3,1,3,1,3,1,3,3,3,1,3,0,2,3,1,1,4,3,3,2,3,3,1,2,2,4,1,3,3,0,1,4,2,3,0,1,3,0,3,0,0,1,3,0,2,0,0,3,3,2,1,3,0,3,0,2,0,3,4,4,4,3,1,0,3,0,0,3,3), (0,2,0,1,0,2,0,0,0,1,3,2,2,1,3,0,1,1,3,0,3,2,3,1,2,0,2,0,1,1,3,3,3,0,3,3,1,1,2,3,2,3,3,1,2,3,2,0,0,1,0,0,0,0,0,0,3,0,1,0,0,2,1,2,1,3,0,3,0,0,0,3,4,4,4,3,2,0,2,0,0,2,4), (0,0,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,2,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,3,1,0,0,0,0,0,0,0,3), (0,3,0,3,0,2,0,3,0,3,3,3,2,3,2,2,2,0,3,1,3,3,3,2,3,3,0,0,3,0,3,2,2,0,2,3,1,4,3,4,3,3,2,3,1,5,4,4,0,3,1,2,1,3,0,3,1,1,2,0,2,3,1,3,1,3,0,3,0,1,0,3,3,4,4,2,1,0,2,1,0,2,4), (0,1,0,3,0,1,0,2,0,1,4,2,5,1,4,0,2,0,2,1,3,1,4,0,2,1,0,0,2,1,4,1,1,0,3,3,0,5,1,3,2,3,3,1,0,3,2,3,0,1,0,0,0,0,0,0,1,0,0,0,0,4,0,1,0,3,0,2,0,1,0,3,3,3,4,3,3,0,0,0,0,2,3), (0,0,0,1,0,0,0,0,0,0,2,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,1,0,0,0,0,0,3), (0,1,0,3,0,4,0,3,0,2,4,3,1,0,3,2,2,1,3,1,2,2,3,1,1,1,2,1,3,0,1,2,0,1,3,2,1,3,0,5,5,1,0,0,1,3,2,1,0,3,0,0,1,0,0,0,0,0,3,4,0,1,1,1,3,2,0,2,0,1,0,2,3,3,1,2,3,0,1,0,1,0,4), (0,0,0,1,0,3,0,3,0,2,2,1,0,0,4,0,3,0,3,1,3,0,3,0,3,0,1,0,3,0,3,1,3,0,3,3,0,0,1,2,1,1,1,0,1,2,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,2,2,1,2,0,0,2,0,0,0,0,2,3,3,3,3,0,0,0,0,1,4), (0,0,0,3,0,3,0,0,0,0,3,1,1,0,3,0,1,0,2,0,1,0,0,0,0,0,0,0,1,0,3,0,2,0,2,3,0,0,2,2,3,1,2,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0,0,2,3), (2,4,0,5,0,5,0,4,0,3,4,3,3,3,4,3,3,3,4,3,4,4,5,4,5,5,5,2,3,0,5,5,4,1,5,4,3,1,5,4,3,4,4,3,3,4,3,3,0,3,2,0,2,3,0,3,0,0,3,3,0,5,3,2,3,3,0,3,0,3,0,3,4,5,4,5,3,0,4,3,0,3,4), (0,3,0,3,0,3,0,3,0,3,3,4,3,2,3,2,3,0,4,3,3,3,3,3,3,3,3,0,3,2,4,3,3,1,3,4,3,4,4,4,3,4,4,3,2,4,4,1,0,2,0,0,1,1,0,2,0,0,3,1,0,5,3,2,1,3,0,3,0,1,2,4,3,2,4,3,3,0,3,2,0,4,4), (0,3,0,3,0,1,0,0,0,1,4,3,3,2,3,1,3,1,4,2,3,2,4,2,3,4,3,0,2,2,3,3,3,0,3,3,3,0,3,4,1,3,3,0,3,4,3,3,0,1,1,0,1,0,0,0,4,0,3,0,0,3,1,2,1,3,0,4,0,1,0,4,3,3,4,3,3,0,2,0,0,3,3), (0,3,0,4,0,1,0,3,0,3,4,3,3,0,3,3,3,1,3,1,3,3,4,3,3,3,0,0,3,1,5,3,3,1,3,3,2,5,4,3,3,4,5,3,2,5,3,4,0,1,0,0,0,0,0,2,0,0,1,1,0,4,2,2,1,3,0,3,0,2,0,4,4,3,5,3,2,0,1,1,0,3,4), (0,5,0,4,0,5,0,2,0,4,4,3,3,2,3,3,3,1,4,3,4,1,5,3,4,3,4,0,4,2,4,3,4,1,5,4,0,4,4,4,4,5,4,1,3,5,4,2,1,4,1,1,3,2,0,3,1,0,3,2,1,4,3,3,3,4,0,4,0,3,0,4,4,4,3,3,3,0,4,2,0,3,4), (1,4,0,4,0,3,0,1,0,3,3,3,1,1,3,3,2,2,3,3,1,0,3,2,2,1,2,0,3,1,2,1,2,0,3,2,0,2,2,3,3,4,3,0,3,3,1,2,0,1,1,3,1,2,0,0,3,0,1,1,0,3,2,2,3,3,0,3,0,0,0,2,3,3,4,3,3,0,1,0,0,1,4), (0,4,0,4,0,4,0,0,0,3,4,4,3,1,4,2,3,2,3,3,3,1,4,3,4,0,3,0,4,2,3,3,2,2,5,4,2,1,3,4,3,4,3,1,3,3,4,2,0,2,1,0,3,3,0,0,2,0,3,1,0,4,4,3,4,3,0,4,0,1,0,2,4,4,4,4,4,0,3,2,0,3,3), (0,0,0,1,0,4,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,3,2,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2), (0,2,0,3,0,4,0,4,0,1,3,3,3,0,4,0,2,1,2,1,1,1,2,0,3,1,1,0,1,0,3,1,0,0,3,3,2,0,1,1,0,0,0,0,0,1,0,2,0,2,2,0,3,1,0,0,1,0,1,1,0,1,2,0,3,0,0,0,0,1,0,0,3,3,4,3,1,0,1,0,3,0,2), (0,0,0,3,0,5,0,0,0,0,1,0,2,0,3,1,0,1,3,0,0,0,2,0,0,0,1,0,0,0,1,1,0,0,4,0,0,0,2,3,0,1,4,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,3,0,0,0,0,0,3), (0,2,0,5,0,5,0,1,0,2,4,3,3,2,5,1,3,2,3,3,3,0,4,1,2,0,3,0,4,0,2,2,1,1,5,3,0,0,1,4,2,3,2,0,3,3,3,2,0,2,4,1,1,2,0,1,1,0,3,1,0,1,3,1,2,3,0,2,0,0,0,1,3,5,4,4,4,0,3,0,0,1,3), (0,4,0,5,0,4,0,4,0,4,5,4,3,3,4,3,3,3,4,3,4,4,5,3,4,5,4,2,4,2,3,4,3,1,4,4,1,3,5,4,4,5,5,4,4,5,5,5,2,3,3,1,4,3,1,3,3,0,3,3,1,4,3,4,4,4,0,3,0,4,0,3,3,4,4,5,0,0,4,3,0,4,5), (0,4,0,4,0,3,0,3,0,3,4,4,4,3,3,2,4,3,4,3,4,3,5,3,4,3,2,1,4,2,4,4,3,1,3,4,2,4,5,5,3,4,5,4,1,5,4,3,0,3,2,2,3,2,1,3,1,0,3,3,3,5,3,3,3,5,4,4,2,3,3,4,3,3,3,2,1,0,3,2,1,4,3), (0,4,0,5,0,4,0,3,0,3,5,5,3,2,4,3,4,0,5,4,4,1,4,4,4,3,3,3,4,3,5,5,2,3,3,4,1,2,5,5,3,5,5,2,3,5,5,4,0,3,2,0,3,3,1,1,5,1,4,1,0,4,3,2,3,5,0,4,0,3,0,5,4,3,4,3,0,0,4,1,0,4,4), (1,3,0,4,0,2,0,2,0,2,5,5,3,3,3,3,3,0,4,2,3,4,4,4,3,4,0,0,3,4,5,4,3,3,3,3,2,5,5,4,5,5,5,4,3,5,5,5,1,3,1,0,1,0,0,3,2,0,4,2,0,5,2,3,2,4,1,3,0,3,0,4,5,4,5,4,3,0,4,2,0,5,4), (0,3,0,4,0,5,0,3,0,3,4,4,3,2,3,2,3,3,3,3,3,2,4,3,3,2,2,0,3,3,3,3,3,1,3,3,3,0,4,4,3,4,4,1,1,4,4,2,0,3,1,0,1,1,0,4,1,0,2,3,1,3,3,1,3,4,0,3,0,1,0,3,1,3,0,0,1,0,2,0,0,4,4), (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (0,3,0,3,0,2,0,3,0,1,5,4,3,3,3,1,4,2,1,2,3,4,4,2,4,4,5,0,3,1,4,3,4,0,4,3,3,3,2,3,2,5,3,4,3,2,2,3,0,0,3,0,2,1,0,1,2,0,0,0,0,2,1,1,3,1,0,2,0,4,0,3,4,4,4,5,2,0,2,0,0,1,3), (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,4,2,1,1,0,1,0,3,2,0,0,3,1,1,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,2,0,0,0,1,4,0,4,2,1,0,0,0,0,0,1), (0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,3,1,0,0,0,2,0,2,1,0,0,1,2,1,0,1,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,3,1,0,0,0,0,0,1,0,0,2,1,0,0,0,0,0,0,0,0,2), (0,4,0,4,0,4,0,3,0,4,4,3,4,2,4,3,2,0,4,4,4,3,5,3,5,3,3,2,4,2,4,3,4,3,1,4,0,2,3,4,4,4,3,3,3,4,4,4,3,4,1,3,4,3,2,1,2,1,3,3,3,4,4,3,3,5,0,4,0,3,0,4,3,3,3,2,1,0,3,0,0,3,3), (0,4,0,3,0,3,0,3,0,3,5,5,3,3,3,3,4,3,4,3,3,3,4,4,4,3,3,3,3,4,3,5,3,3,1,3,2,4,5,5,5,5,4,3,4,5,5,3,2,2,3,3,3,3,2,3,3,1,2,3,2,4,3,3,3,4,0,4,0,2,0,4,3,2,2,1,2,0,3,0,0,4,1), ) class JapaneseContextAnalysis: def __init__(self): self.reset() def reset(self): self._mTotalRel = 0 # total sequence received # category counters, each interger counts sequence in its category self._mRelSample = [0] * NUM_OF_CATEGORY # if last byte in current buffer is not the last byte of a character, # we need to know how many bytes to skip in next buffer self._mNeedToSkipCharNum = 0 self._mLastCharOrder = -1 # The order of previous char # If this flag is set to True, detection is done and conclusion has # been made self._mDone = False def feed(self, aBuf, aLen): if self._mDone: return # The buffer we got is byte oriented, and a character may span in more than one # buffers. In case the last one or two byte in last buffer is not # complete, we record how many byte needed to complete that character # and skip these bytes here. We can choose to record those bytes as # well and analyse the character once it is complete, but since a # character will not make much difference, by simply skipping # this character will simply our logic and improve performance. i = self._mNeedToSkipCharNum while i < aLen: order, charLen = self.get_order(aBuf[i:i + 2]) i += charLen if i > aLen: self._mNeedToSkipCharNum = i - aLen self._mLastCharOrder = -1 else: if (order != -1) and (self._mLastCharOrder != -1): self._mTotalRel += 1 if self._mTotalRel > MAX_REL_THRESHOLD: self._mDone = True break self._mRelSample[jp2CharContext[self._mLastCharOrder][order]] += 1 self._mLastCharOrder = order def got_enough_data(self): return self._mTotalRel > ENOUGH_REL_THRESHOLD def get_confidence(self): # This is just one way to calculate confidence. It works well for me. if self._mTotalRel > MINIMUM_DATA_THRESHOLD: return (self._mTotalRel - self._mRelSample[0]) / self._mTotalRel else: return DONT_KNOW def get_order(self, aBuf): return -1, 1 class SJISContextAnalysis(JapaneseContextAnalysis): def get_order(self, aBuf): if not aBuf: return -1, 1 # find out current char's byte length first_char = wrap_ord(aBuf[0]) if ((0x81 <= first_char <= 0x9F) or (0xE0 <= first_char <= 0xFC)): charLen = 2 else: charLen = 1 # return its order if it is hiragana if len(aBuf) > 1: second_char = wrap_ord(aBuf[1]) if (first_char == 202) and (0x9F <= second_char <= 0xF1): return second_char - 0x9F, charLen return -1, charLen class EUCJPContextAnalysis(JapaneseContextAnalysis): def get_order(self, aBuf): if not aBuf: return -1, 1 # find out current char's byte length first_char = wrap_ord(aBuf[0]) if (first_char == 0x8E) or (0xA1 <= first_char <= 0xFE): charLen = 2 elif first_char == 0x8F: charLen = 3 else: charLen = 1 # return its order if it is hiragana if len(aBuf) > 1: second_char = wrap_ord(aBuf[1]) if (first_char == 0xA4) and (0xA1 <= second_char <= 0xF3): return second_char - 0xA1, charLen return -1, charLen # flake8: noqa